Stoffwechselprodukte von Mikroorganismen, 172<sup>1)</sup>

# Isolierung des Antibioticums semi-Vioxanthin aus Penicillium citreo-viride und Synthese des Xanthomegnins

Axel Zeeck<sup>\*)\*</sup>, Peter Ruß, Hartmut Laatsch, Wolfgang Loeffler<sup>\*\*)</sup>, Herbert Wehrle, Hans Zähner und Hartwig Holst<sup>\*\*\*)</sup>

Organisch-Chemisches Institut der Universität Göttingen, Tammannstr. 2, D-3400 Göttingen\*, Institut für Biologie II der Universität Tübingen\*\*) und Institut für Phytopathologie der Universität Gießen\*\*\*)

Eingegangen am 29. Mai 1978

Neben Xanthomegnin (16b), 3,4-Dehydroxanthomegnin (29a), Viomellein (23) und Vioxanthin (3) wurde aus *Penicillium citreo-viride* unter veränderten Kulturbedingungen *semi*-Vioxanthin (7) isoliert. Konstitution 7 folgt aus den Spektren und dem Befund, daß mit Fremy-Salz 3,4,6,9-Tetrahydro-10-hydroxy-7-methoxy-3-methyl-1,6,9-trioxo-1*H*-naphtho[2.3-c]pyran (9a = *semi*-Xanthomegnin) entsteht. – Das durch Entmethylierung von 9a zugängliche 9c ließ sich mit Kaliumpersulfat/Natriumhydroxid zu 16a dimerisieren, das zu 16b methyliert wurde. Synthetisches 16b war mit nativem Xanthomegnin identisch, was die von *Höfle* und *Röser*<sup>9)</sup> revidierte Konstitution bestätigt und beweist, daß die Farbstoffe der Xanthomegnin-Reihe biogenetisch einheitlich sind. – Die Stoffwechselprodukte des Stammes hemmen das Wachstum von Bakterien. 16b und 23 wirken ferner gegen Insekten.

#### Metabolic Products of Microorganism, 1721)

# Isolation of the Antibiotic *semi*-Vioxanthin from *Penicillium citreo-viride* and Synthesis of Xanthomegnin

Besides xanthomegnin (16b), 3,4-dehydroxanthomegnin (29a), viomellein (23) and vioxanthin (3) from *Penicillium citreo-viride* under different culture conditions *semi-vioxanthin* (7) was isolated. Structure 7 has been established by its spectra and the fact that oxidation with Fremy's salt gives 3,4,6,9-tetrahydro-10-hydroxy-7-methoxy-3-methyl-1,6,9-trioxo-1*H*-naphtho[2,3-c]pyran (9a = *semi-xanthomegnin*). — 9c, prepared by demethylation of 9a, was dimerized by potassium peroxydisulfate/sodium hydroxide and methylated, giving 16b. Synthetic 16b and authentic xanthomegnin were identical, which verifies the structure revised by  $H\ddot{o}fle$  and  $R\ddot{o}ser^{9}$  and shows, that the dyes of the xanthomegnin series are biogenetically homogenous. — The metabolic products of the strain inhibit the growth of bacteria. 16b and 26 furthermore have an effect against insects.

Der Pilzstamm Tü 553 (*Penicillium citreo-viride*) produziert ein Gemisch gelber und gelbroter Farbstoffe, die antibiotische Aktivität zeigen und auf Insekten fraßhemmend wirken. Das fettfreie Farbstoff-Rohprodukt, das durch Aceton-Extraktion des Mycels und Petrolether-Fällung des öligen Eindampfrückstandes gewonnen wurde, trennte sich beim wiederholten Chromatographieren an Oxalsäure-Kieselgel in sechs Komponenten

© Verlag Chemie, GmbH, D-6940 Weinheim, 1979

0009-2940/79/0303- 957 \$ 02.50/0

(Tab. 1), von denen sich drei durch ihre Spektren als Xanthomegnin, Viomellein bzw. Vioxanthin identifizieren ließen.

Die Hauptkomponente Xanthomegnin ist als Stoffwechselprodukt verschiedener Trichophyton-Stämme<sup>2-4)</sup> und von Microsporium cookii<sup>5)</sup> schon länger bekannt und wurde kürzlich auch aus Aspergillus-Stämmen<sup>6)</sup> isoliert. Die Konstitution 1<sup>7)</sup> basiert auf chemischen und spektroskopischen Daten, auch eine eingehende Analyse der <sup>13</sup>C-NMR-Spektren im Zusammenhang mit Biosynthese-Untersuchungen liegt vor <sup>8)</sup>.

Viomellein wird von unserem Stamm in wesentlich geringerer Menge produziert (Tab. 1). Es kommt als Begleiter des Xanthomegnins auch in *Aspergillus*-Arten vor<sup>6)</sup>, ihm wurde Formel **2** zugeschrieben<sup>6,8)</sup>. Vioxanthin (3) ist eine Nebenkomponente und wurde erstmals aus *Trichophyton violaceum* isoliert<sup>4)</sup>.



Unter der Annahme, daß die Dimeren 1, 2 bzw. 3 bei der Biosynthese aus entsprechenden monomeren Vorstufen (5 bzw. 7) gebildet werden, muß der Stamm Bausteine bereitstellen, denen unterschiedlich gefaltete  $C_{14}$ -Polyketidketten (4 bzw. 6) zugrundeliegen<sup>8)</sup>. Die Parallelsynthese linear bzw. angular anellierter Ringsysteme mit gleichem Substituentenmuster wäre eine Besonderheit der untersuchten Produzenten-Stämme. Da Viomellein stärker antibakteriell wirkt als Xanthomegnin, hatten wir die Absicht, das Produktverhältnis Xanthomegnin/Viomellein von 5:1 zugunsten des Viomelleins zu verschieben. Dies liefe auf eine Beeinflussung der Biosynthese von 5 bzw. 7 hinaus und sollte unter der Annahme, daß für unterschiedlich anellierte Ringsysteme verschiedene Enzymsysteme benötigt werden, durch Änderung der Kulturbedingungen möglich sein.

Reihenversuche zeigten, daß sich das Produktverhältnis Xanthomegnin/Viomellein nicht signifikant beeinflussen ließ. In einem Fall produzierte unser Stamm auffallend wenig dimere Stoffwechselprodukte, daneben jedoch einen der denkbaren monomeren Bausteine, das *semi*-Vioxanthin (7), in großer Menge (Tab. 1). Von der "Hilfssubstanz" 7 ausgehend konnten wir beweisen, daß die bislang angenommenen Strukturformeln 1 für Xanthomegnin und **2** für Viomellein zu korrigieren sind. Zu diesem Ergebnis kamen vor uns bereits *Höfle* und *Röser*<sup>9</sup> aufgrund einer sorgfältigen Analyse der <sup>13</sup>C-NMR-Daten.

Tab. 1. R<sub>F</sub>-Werte, Anteil (% des fettfreien Rohproduktes) und Ausbeute (mg pro Liter Kulturlösung) der Farbstoffe aus *Penicillium citreo-viride* unter verschiedenen Kulturbedingungen

|                                      |                      | Med           | ium 1           | Medi          | um 2            |
|--------------------------------------|----------------------|---------------|-----------------|---------------|-----------------|
| Substanz                             | $R_{\rm F}^{\rm a)}$ | Anteil<br>(%) | Ausb.<br>(mg/l) | Anteil<br>(%) | Ausb.<br>(mg/l) |
| semi-Vioxanthin (7)                  | 0.61                 | _             |                 | 40            | 120             |
| Vioxanthin (3)                       | 0.54                 | 1             | 2.5             | <1            |                 |
| A-2                                  | 0.46                 | < 1           |                 |               |                 |
| Viomellein (23)                      | 0.40                 | 8             | 20              | 1             | 3               |
| B-2                                  | 0.35                 | <1            |                 |               |                 |
| C-1 = 3,4-Dehydro-xanthomegnin (29a) | 0.31                 | < 1           |                 |               |                 |
| Xanthomegnin (16b)                   | 0.27                 | 45            | 115             | 5             | 15              |

<sup>a)</sup> Kieselgel-DC-Folien (Merck) mit 0.5 N Oxalsäure imprägniert, Chloroform/5% Aceton als Laufmittel.

#### semi-Vioxanthin (7)

Der untersuchte Penicillium-Stamm Tü 553 wurde zunächst in einem Malzextrakt/ Glucose/Hefeextrakt-Nährboden (Medium 1, 2001 Luft/min) submers gezogen, die Zusammensetzung des fettfreien Rohproduktes (250 mg/l) zeigt Tab. 1. Bei Versuchen, das Produktverhältnis Xanthomegnin/Viomellein über die Kulturbedingungen zu verändern, erhielten wir in einem Mannit/Glutaminsäure/Ammoniumsulfat-Nährboden (Medium 2) bei gedrosselter Luftzufuhr (100 l/min) ein Farbstoff-Rohprodukt (300 mg/l), das im Dünnschichtchromatogramm eine grüne Hauptzone bildete, die schneller als Vioxanthin (3) wanderte (Tab. 1). Bei der säulenchromatographischen Trennung an Oxalsäure-Kieselgel im System Chloroform/10% Aceton ließ sich aus der grünen Zone eine Substanz eluieren, die in festem Zustand nur blaß grünlich gefärbt war und aus Chloroform/Ethanol kristallisierte. Wie die Strukturuntersuchungen ergaben, handelt es sich um *semi*-Vioxanthin (7), für das eine intensive Grünfärbung mit Eisen(III)-chlorid charakteristisch ist.

semi-Vioxanthin hat die durch Analysenzahlen und Massenspektrum gesicherte Summenformel  $C_{15}H_{14}O_5$  und ist damit nur halb so groß wie die anderen vom Stamm produzierten Komponenten. Es besitzt eine Methoxy- und zwei acetylierbare phenolische Hydroxygruppen, von denen eine mit einer Carbonylgruppe stark cheliert ist ( $\delta = 13.79$ , Tab. 2). Die Konstitution 7 ergibt sich im Vergleich zum Vioxanthin (3)<sup>4)</sup> aus folgenden Daten:

1. Die Elektronenspektren in verschiedenen Lösungsmitteln sind im Verlauf gleich, die Hauptmaxima von 7 sind bei etwa halber Extinktion um 8-12 nm hypsochrom verschoben (Tab. 3).

| Verbin-            | 3-CH3              | 3-H  | $4-H_2$            | 5-H  | H-8 H-9                 | 7-OCH <sub>3</sub> | HO-6 | 10-0H       | OR <sup>a)</sup> |
|--------------------|--------------------|------|--------------------|------|-------------------------|--------------------|------|-------------|------------------|
| dung               | d, $J = 6.5$ Hz    | mc   | mc <sup>bj</sup>   | s    | s<br>s                  | s                  | s    | s           | S                |
| 7                  | 1.53               | 4.72 | 2.93               | 6.83 | 6.49/6.53 <sup>e)</sup> | 3.85               | 9.43 | 13.79       | I                |
| 8a                 | 1.43               | 4.51 | 2.83               | 7.31 | 6.81/6.89 <sup>c)</sup> | 3.83               | I    | I           | 2.38/2.46        |
| 8b                 | 1.50               | 4.61 | 2.95               | 7.19 | 6.55/6.59 <sup>c)</sup> | 3.86               | 9.86 | 1           | 4.11             |
| 8c                 | 1.46               | 4.52 | 2.91               | 7.23 | 6.79/6.90 <sup>c)</sup> | 3.86               | Ι    | ł           | 2.36/3.98        |
| <b>8</b> d         | 1.53               | 4.72 | 2.97               | 6.92 | 6.76/6.88 <sup>c)</sup> | 3.89               | I    | 12.94       | 2.37             |
| 9a                 | 1.52               | 4.66 | 2.99               | 7.45 | - 6.14                  | 3.91               | Ì    | 13.28       | -                |
| 9с                 | 1.55               | 4.66 | 3.02               | 7.53 | - 6.38                  | I                  | I    | 13.43       | Ι                |
| 12b                | 1.51               | 4.70 | 3.00               | 7.37 | - 6.85                  | 3.97               | Ι    | 13.04       | 5.86/2.36        |
| 17a                | 1.55               | 4.74 | 3.00               | 7.26 | - 6.66                  | 3.96               | 9.43 | 13.91       | 3.84             |
| 17c                | 1.48               | 4.70 | 2.97               | 7.26 | - 6.63                  | 3.94               | I    | 13.22       | 5.55/3.98        |
| 3 <sup>d)</sup>    | 1.55               | 4.75 | 3.00               | 6.95 | 6.71                    | 3.83               | 9.73 | 13.87       | l                |
| 16b <sup>d)</sup>  | 1.54               | 4.66 | 3.03               | 7.50 | 1                       | 4.15               | I    | 13.15/13.13 | I                |
| 29 a <sup>e)</sup> | 2.33 <sup>f)</sup> | 1    | 6.36 <sup>g)</sup> | 7.52 | I<br>I                  | 4.17               | I    | 13.66       | ١                |
| 29a <sup>h)</sup>  | 1.55               | 4.67 | 3.03               | 7.50 | <br>                    | 4.17               | I    | 13.15/13.13 | I                |
| 29 b <sup>e)</sup> | $2.30^{f}$         | I    | 6.38 <sup>g)</sup> | 7.34 |                         | 4.07               | I    | ł           | 2.39             |
| 29b <sup>h)</sup>  | 1.53               | 4.60 | 3.06               | 7.93 | I<br>I                  | 4.07               | i    | I           | 2.45             |
| 23 <sup>i)</sup>   | 1.54               | 4.72 | 3.01               | 6.97 | - 99.9                  | 3.85               | 9.81 | 13.83       | I                |
| 23 <sup>h)</sup>   | 1.54               | 4.72 | 3.01               | 7.51 | I<br>I                  | 3.92               | I    | 13.39       | Ι                |

| Verbin-<br>dung | Lösungs-<br>mittel <sup>a)</sup> |           | $\lambda_{max} \left( \epsilon \cdot 10^{-1} \right)$ | <sup>- 2</sup> ) in nm | b)        |          |           |
|-----------------|----------------------------------|-----------|-------------------------------------------------------|------------------------|-----------|----------|-----------|
| 7               | Α                                |           | 371 (101)                                             | 308 (36)               | 2         | 60 (479) |           |
|                 | В                                |           | 376 (101), 361 (102), 342 sh,                         | , 308 (39),            | 297 sh, 2 | 62 (551) |           |
|                 | С                                |           | 376 (122)                                             | 330 (40)               | 2         | 61 (408) |           |
| 3               | Α                                |           | 379 (175)                                             | 310 sh                 | 2         | 67 (612) |           |
|                 | В                                |           | 385 (157), 368 (137), 350 sh,                         | , 310 sh               | 2         | 71 (532) |           |
|                 | С                                |           | 388 (227), 372 sh                                     | 332 (60)               | 2         | 67 (491) |           |
| 9a              | А                                | 412 (47)  |                                                       |                        | 287 (86)  |          | 226 (296) |
|                 | D                                | 415 (50)  |                                                       |                        | 287 (107) |          | 227 (302) |
|                 | С                                | 540 (62)  |                                                       | 353 (13),              | 287 (127) | 1        | 228 (303) |
| 16b             | А                                | 395 (105) |                                                       |                        | 275 (249) | 1        |           |
|                 | D                                | 393 (108) |                                                       |                        | 288 (177) | 1        | 227 (537) |
|                 | С                                | 540 (99), | 392 (60)                                              |                        | 280 (253) | 1        |           |
| 23              | А                                |           | 383 (184), 370 sh                                     |                        | 293 sh, 2 | 63 (471) | 1         |
|                 | D                                | 410 sh,   | 372 (154), 355 (141)                                  |                        | 293 sh, 2 | 61 (629) | 219 (389) |
|                 | С                                | 532 (81), | 383 (158), 370 sh                                     | 330 (65),              | 295 sh, 2 | 64 (432) | )         |

Tab. 3. Elektronenspektren von semi-Vioxanthin (7), Vioxanthin (3), semi-Xanthomegnin (9a), Xanthomegnin (16b) und Viomellein (23) in verschiedenen Lösungsmitteln

<sup>a)</sup> A: Methanol, B: Cyclohexan/5% Dioxan, C: 0.1 N methanol. NaOH, D: Dioxan. <sup>b)</sup> sh = Schulter.

2. Die IR-Spektren beider Verbindungen zeigen bei  $1640 \text{ cm}^{-1}$  die Lacton-CO-Bande, die im *semi*-Vioxanthin-diacetat (8a) auf 1715 cm<sup>-1</sup> verschoben ist, analog wie im Vioxanthin-tetraacetat<sup>4</sup>).

3. Die <sup>1</sup>H-NMR-Spektren beider Verbindungen sind sehr ähnlich (Tab. 2). Im Bereich für aromatische H-Atome zeigt 3 zwei Singuletts ( $\delta = 6.71$  und 6.95), während 7 ein Singulett ( $\delta = 6.83$ ) und ein AB-Signal ( $\delta = 6.49/6.53$  mit J = 2.0 Hz) für *meta*-ständige H-Atome liefert. Damit ist in 7 eine Kernstelle am Naphthalingerüst mehr frei als in den Molekülhälften von 3, die über C-8 verknüpft sind. Im dimeren Naturstoff sind die <sup>1</sup>H-NMR-Signale jeweils geringfügig paramagnetisch verschoben, in sich jedoch scharf, weil 3 symmetrisch gebaut und optisch einheitlich ist.

4. Die  ${}^{13}$ C-NMR-Signale von 7 (breitband- und teilentkoppelt) entsprechen denen der nicht-chinoiden Molekülhälfte des Viomelleins (Tab. 4)<sup>8)</sup>.

Die *peri*-Stellung der phenolischen Hydroxygruppen in 7 folgt u. a. aus ihrer chemischen Verschiebung ( $\delta = 9.43/13.79$ ) und der Art, wie sich die Signale beeinflussen lassen. Im *semi*-Vioxanthin-methylether (**8b**), der aus 7 mit Diazomethan leicht zugänglich ist, verändert die weniger stark chelierte Hydroxygruppe ihre Lage auf  $\delta = 9.86$ . Dagegen ist im Monoacetat **8d**, das von **8b** ausgehend über **8c** und dessen vorsichtige Entmethylierung mit Aluminium(III)-bromid in Chloroform entsteht, die stark chelierte Hydroxygruppe um 0.85 ppm diamagnetisch auf  $\delta = 12.94$ verschoben. Die Acetoxygruppe in **8d** beeinflußt außerdem nur die beiden *meta*-ständigen Aromat-H ( $\delta = 6.76/6.88$  gegenüber 6.49/6.53 in 7), damit grenzt der zugehörige Aromatring, der auch die Methoxygruppe trägt, nicht an den Lactonring.

Die entscheidende Frage nach der Anellierung der Ringe (linear wie in 7 oder angular) ließ sich über das gelbrote Chinon  $C_{15}H_{12}O_6$  klären, das bei der Fremy-Salz-Oxidation<sup>10</sup>)

|                   | 7<br>[D <sub>6</sub> ]DMSO | 23 <sup>a)</sup><br>CDCl <sub>3</sub> | 9a<br>CDCl <sub>3</sub> | 16b<br>CDCl <sub>3</sub> | <b>23</b> <sup>b)</sup><br>CDCl <sub>3</sub> |
|-------------------|----------------------------|---------------------------------------|-------------------------|--------------------------|----------------------------------------------|
| C-1               | 170.5                      | 171.2                                 | 161.8                   | 162.2                    | 162.4                                        |
| C-3               | 76.0 d                     | 76.5 d                                | 74.2 d                  | 74.4 d                   | 74.1 d                                       |
| C-4               | 33.8 t                     | 34.6 t                                | 36.1 t                  | 36.1 t                   | 36.3 t                                       |
| C-4a              | 134.0                      | 134.0                                 | 148.1                   | 148.1                    | 147.9                                        |
| C-5               | 115.4 d                    | 116.0 d                               | 116.7 d                 | 116.8 d                  | 116.4 d                                      |
| C-5a              | 140.3                      | 140.5                                 | 133.9                   | 134.7                    | 134.5                                        |
| C-6               | 100.9 d                    | 97.8 d                                | 178.7                   | 179.8                    | 180.1                                        |
| C-7               | 161.9                      | 160.1                                 | 160.1                   | 157.9                    | 158.2                                        |
| C-8               | 99.1 d                     | 105.1                                 | 110.3 d                 | 123.0                    | 123.6                                        |
| C-9               | 161.7                      | 161.3                                 | 188.7                   | 186.0                    | 188.3                                        |
| C-9a              | 99.4                       | 99.9                                  | 114.4                   | 114.8                    | 114.8                                        |
| C-10              | 157.6                      | 155.3                                 | 162.6                   | 162.7                    | 162.8                                        |
| C-10a             | 107.9                      | 107.9                                 | 117.8                   | 117.5                    | 117.6                                        |
| 3-CH <sub>3</sub> | 20.3 q                     | 20.7                                  | 20.6 q                  | 20.6 q                   | 20.7 g                                       |
| 7-OCH             | 55.3 a                     | 55.9 a                                | 56.8 a                  | 61.4 a                   | 60.3 a                                       |

Tab. 4. <sup>13</sup>C-NMR-Daten (δ-Werte bezogen auf TMS) von semi-Vioxanthin (7) und semi-Xanthomegnin (9 a) im Vergleich mit Xanthomegnin (16b)<sup>8</sup> und Viomellein (23)<sup>8</sup>

<sup>a)</sup> 7-analoge Molekülhälfte. – <sup>b)</sup> 9a-analoge Molekülhälfte.

von semi-Vioxanthin in 75 proz. Ausbeute entsteht. Es zeigt ein dem 5-Hydroxy-2-methoxy-1,4-naphthochinon (10a) ähnliches Elektronenspektrum und enthält eine acetylierbare, phenolische Hydroxygruppe, die stark cheliert ist ( $\delta = 13.28$ , vgl. Tab. 2). Das Chinon besitzt die Konstitution 9a, was sich wie folgt belegen läßt.



Da die IR-Bande der Lacton-Carbonylgruppe bei **9a** und seinem Monoacetat **9b** unverändert liegt (1730 cm<sup>-1</sup>), steht die Hydroxygruppe zu einer der beiden Chinon-Carbonylgruppen (IR-Banden um 1680 und 1618 cm<sup>-1</sup>) in *peri*-Stellung und bildet die Wasserstoffbrücke zu diesem aus. Aus dem <sup>1</sup>H-NMR-Spektrum von **9a** (Tab. 2) folgt, daß der die Methoxygruppe tragende Aromatring in 7 zum Chinonring wurde, denn eines der *meta*-ständigen H-Atome von 7 fehlt. Sichtbar sind im entsprechenden Bereich nur noch zwei 1H-Singuletts, von denen das bei  $\delta = 6.14$  im Bereich für Chinon-H liegt, dem eine Methoxygruppe benachbart steht. **10a** zeigt das Signal für 3-H bei  $\delta = 6.09^{111}$ . Das zweite Singulett ( $\delta = 7.45$ ) ist gegenüber dem entsprechenden Signal für 7 um 0.62 ppm paramagnetisch verschoben, was auf die *peri*-Stellung dieses Aromat-H zu einer der neugebildeten Chinon-Carbonylgruppen hindeutet. Aus diesen Befunden folgt die lineare Anellierung für **9a** und ebenso für *semi*-Vioxanthin (7) und seine Derivate **8a-8d**.

**9a** läßt sich mit Aluminium(III)-chlorid in Chloroform leicht entmethylieren. Das Reaktionsprodukt **9c**, eine vinyloge Säure, gibt sich durch typische langwellige UV-Banden in alkalischem Methanol als Derivat des 2,5-Dihydroxy-1,4-naphthochinons (**10b**) zu erkennen<sup>12</sup>. Dafür spricht auch, daß sich die Entmethylierung auf das <sup>1</sup>H-NMR-Signal der chelierten Hydroxygruppe wenig auswirkt (paramagnetische Verschiebung um 0.15 ppm), während im Fall eines **10c**-Derivates eine diamagnetische Verschiebung von 0.6 ppm zu erwarten wäre<sup>11</sup>.

Für das Reaktionsverhalten von 7 ist bemerkenswert, daß Diazomethan bevorzugt die stark chelierte Hydroxygruppe methyliert  $(7 \rightarrow 8b)$  und daß Fremy-Salz sowie andere Oxidationsmittel (z. B. Thallium(III)-salze<sup>13)</sup>) nur den äußeren Ring angreifen  $(7 \rightarrow 9a)$ . Versuche, von 8d ausgehend 11 zu erhalten, schlugen bislang fehl. Bei der Reduktion von 9b mit Natriumdithionit wurde das Hydrochinon 12a erwartet. Das IR-Spektrum (CO-Lacton bei 1650 cm<sup>-1</sup>) und das <sup>1</sup>H-NMR-Spektrum in CDCl<sub>3</sub> ( $\delta = 13.04$  und 5.86 für zwei phenolische Hydroxygruppen) zeigen jedoch an, daß eine der Hydroxygruppen mit der Lacton-Carbonylgruppe cheliert ist und somit 12b vorliegt. 12b entsteht durch Acylwanderung<sup>14)</sup> aus 12a und ist wegen der Chelierung von 10-OH thermodynamisch begünstigt.



Abb. 1. CD-Spektren (Dioxan) von semi-Vioxanthin (7) [----], semi-Xanthomegnin (9a) [.....] und Viomellein (23) [.....]

Die CD-Kurve von *semi*-Vioxanthin (7) zeigt negative Cotton-Effekte bei 270 und 222 nm, positive im langwelligen Bereich und bei 247 nm (Abb. 1). Der Übergang bei 270 nm ( $n \rightarrow \pi^*$  für CO-Lacton am Naphthalingerüst) entspricht dem des (*R*)-Melleins (13) bei 257 nm<sup>15)</sup>. Das negative Vorzeichen dokumentiert *R*-Konfiguration für C-3 in 7. Im Chinon **9a** ist der entsprechende Übergang als Folge des veränderten Chromophors in der Umgebung der Lacton-Carbonylgruppe auf 305 nm verschoben (Abb. 1).

#### Synthese von Xanthomegnin (16b)

Vom semi-Vioxanthin (7) ausgehend planten wir die Dimerisierung zum Vioxanthin (3, 8,8'-Verknüpfung) bzw. symmetrischen oder unsymmetrischen iso-Vioxanthin (14, 6,6'-Verknüpfung; 15, 6,8'-Verknüpfung) durch Phenol-Oxidation<sup>16)</sup>. Ein Angriff an C-5 erschien nach den Erfahrungen bei der Fremy-Salz-Oxidation unwahrscheinlich und ließe sich durch Schützen der 10-Hydroxygruppe vermeiden. In Versuchen mit Kupfer(II)-acetat/Methanol, Silber(I)-oxid/ Chloroform und Cer(IV)-ammoniumnitrat/wäßr. Dioxan<sup>17)</sup> blieb semi-Vioxanthin (7) unverändert, mit 2,3-Dichlor-5,6-dicyan-1,4-benzochinon/Chloroform, Kupfer(II)-acetat/Weinsäure/ Alkalihydroxid in Methanol/Wasser, Kupfer(II)-nitrat/1-Phenylethylamin<sup>18)</sup>, Hexacyanoferrat(III)/wäßr. Alkalihydroxid und Eisen(III)-chlorid in verschiedenen Lösungsmitteln wurden keine Produkte erhalten, deren Isolierung lohnend war.

Nach den Erfolgen bei der Synthese dimerer 5-Hydroxy-1,4-naphthochinone und ihrer 2- bzw. 7-Methylderivate<sup>19-21</sup> gingen wir in weiteren Versuchen vom Chinon **9a** aus, dessen Hydrochinon-monoether **17a** sich an C-8 oxidativ kuppeln lassen sollte. Wir erwarteten **16b**. Wie sich herausstellte, behindert jedoch die Methoxygruppe an C-7 diese Reaktion.

Während 1,4,5-Trihydroxynaphthalin (18a) unter sauren Bedingungen überwiegend an 1-OH methyliert wird<sup>19</sup>, reagiert das Hydrochinon 17b analog wie 1,4-Dihydroxy-2-methoxynaphthalin (18c)<sup>22</sup> mit Methanol/Chlorwasserstoff ausschließlich an der Hydroxygruppe in *m*-Position zur Methoxygruppe. Es entsteht der moosgrüne Ether 17c, dessen Oxidation mit Silber(I)-oxid oder alkalischer Hexacyanoferrat(III)-Lösung 9a als einziges Produkt gab. Das gesuchte 17a erhielten wir schließlich bei der Methylierung von 17b mit Dimethylsulfat/wäßr. Natriumhydroxid frei von 17c.

17a kristallisiert aus Methanol in blaßgelben Nadeln und hat an Kieselgel einen größeren  $R_{\rm F}$ -Wert als der isomere Ether 17c. Beide Ether unterscheiden sich charakteristisch in den <sup>1</sup>H-NMR-Signalen für die phenolischen Hydroxygruppen (Tab. 2). Während 17a ( $\delta = 13.91/9.43$ ) anzeigt, daß beide Hydroxygruppen – wenn auch unterschiedlich stark – cheliert sind und denen des *semi*-Vioxanthins (7) entsprechen, gibt sich bei 17c ( $\delta = 13.22/5.55$ ) wie bei 12b ein normales Phenol-OH zu erkennen.

Verbindungen vom Typ **18b** lassen sich leicht dimerisieren <sup>19-21</sup>), **17a** reagierte jedoch nur langsam mit Silber(I)-oxid zu einem Chinon bislang unbekannter Struktur, ein Dimeres mit der erwarteten Summenformel  $C_{30}H_{22}O_{12}$  entstand mit weniger als 2% Ausbeute. Das zum Vergleich synthetisierte 4-Hydroxy-1,2-dimethoxynaphthalin (**18d**) reagierte mit Silber(I)-oxid ebenfalls atypisch: Als Hauptprodukt isolierten wir 2-Methoxy-1,4-naphthochinon, während **19** nur zu 4% entstand.

Die Dimerisierung von 9a gelang schließlich glatt über das Hydroxychinon 9c, das sich mit Kaliumpersulfat in wäßrigem Alkalihydroxid<sup>23)</sup> zu 70% in kristallisiertes **16a** überführen ließ. **16a** ist tiefer gelbrot als 9c und unterscheidet sich von diesem deutlich

in den spektroskopischen Daten. Die Elektronenspektren sind im Kurvenverlauf ähnlich und mit dem für 2,5-Dihydroxy-1,4-naphthochinon (10b) vergleichbar<sup>12</sup>), die Hauptmaxima von 16a haben jedoch etwa die doppelten  $\varepsilon$ -Werte verglichen mit 9c. Das <sup>1</sup>H-NMR-Spektrum von 16a in [D<sub>6</sub>]Aceton zeigt im Bereich der Aromat/Olefin-Protonen nur ein Singulett ( $\delta = 7.60$ ), das von den *peri*-ständigen 5-H/5'-H stammt. Es fehlt das Chinon-H von 9c ( $\delta = 6.38$ ). Die Signale sind bei gegebener Aufspaltung scharf, was nur bei einem symmetrischen Dimeren zu erwarten ist.



Mit Diazomethan in Aceton reagierte **16a** quantitativ zum Dimethylether **16b**, der aus Chloroform/Tetrachlorkohlenstoff kristallisiert, aufgrund von Analysenzahlen und hochaufgelöstem Massenspektrum die Summenformel  $C_{30}H_{22}O_{12}$  besitzt und ein Methoxylsingulett für 6H bei  $\delta = 4.15$  gibt. Der  $R_F$ -Wert von **16b** entsprach dem von authentischem Xanthomegnin, zu unserer Überraschung stimmten jedoch auch die <sup>1</sup>H-NMR-Spektren in CDCl<sub>3</sub> bis auf einen kleinen Unterschied in der relativen Intensität der OH-Signale ( $\delta = 13.15/13.13$ ) überein. Dieses OH-Doppelsignal ist ein Hinweis auf Diastereomere, die wegen der behinderten Rotation um die 8,8'-Bindung in **16b** stabil sind <sup>6)</sup>. Beim Vergleich der IR-Spektren (Abb. 2) zeigten synthetisches **16b** und Xanthomegnin für einzelne Banden deutliche Intensitätsunterschiede. Die IR-Spektren beider Präparate stimmten jedoch in allen Details überein, nachdem natives Xanthomegnin zwei Stunden in Toluol erhitzt worden war. Aufgrund unserer Befunde muß die alte Formel **1** für Xanthomegnin in **16b** korrigiert werden.

Die spektroskopischen Daten des Chinons 9a, das aus *semi*-Vioxanthin (7) hervorgeht und somit das *semi*-Xanthomegnin ist, stehen in ähnlicher Beziehung wie die Daten von 7 und Vioxanthin (3) (Tab. 2-4). In Umkehrung der Synthese haben wir natives Xanthomegnin mit Aluminium(III)-chlorid in Chloroform entmethyliert. Aus dem Reaktions-

1979



Abb. 2. IR-Spektren (KBr) von nativem Xanthomegnin (16b) [-----] und synthetischem 16b [-----]

gemisch ließ sich unverändertes Ausgangsprodukt, 7-Desmethylxanthomegnin und zu 60% 7,7'-Didesmethylxanthomegnin (16a) chromatographisch abtrennen, das in  $R_{\rm F}$ -Wert und IR-Spektrum mit dem aus 9c gewonnenen 16a übereinstimmte und damit auch auf dieser Stufe den Strukturbeweis bestätigte.

Ausgehend von 16b müssen ältere, zum Strukturbeweis herangezogene Daten korrigiert werden. 1. Die beim oxidativen Abbau des Xanthomegnins entstehende Abbau-dicarbonsäure hat die Konstitution 20a, die früher angenommene Formel 21 wurde nicht eindeutig belegt<sup>6, 7a)</sup>. 2. Die im <sup>13</sup>C-NMR-Spektrum des Xanthomegnins beobachtete 5-Hz-Kopplung des C-Atoms der nichtchelierten Chinon-Carbonylgruppe ( $\delta = 179.8$ )<sup>8)</sup> geht von einzigen kernständigen Aromat-H aus und ist in 16b eine übliche <sup>3</sup>J<sub>C-H</sub>-Kopplung<sup>9, 24)</sup>. 3. Die beim Tetrahydroxanthomegnindiacetat beobachtete Verschiebung der IR-Bande für die Lacton-Carbonylgruppe von 1730 auf 1660 cm<sup>-1</sup> wird verständlich, wenn nicht 22a, sondern 22b gilt. Diese Deutung steht mit dem Befund beim Übergang 9b  $\rightarrow$  12b im Einklang.



#### Weitere Farbstoffe der Xanthomegain-Reihe

Vom Xanthomegnin (16b) ausgehend läßt sich die Konstitution der anderen Farbstoffe, die begleitend auftreten<sup>6)</sup>, korrigieren<sup>9)</sup>. Zu nennen sind Viomellein (2 korrigiert in 23), Rubrosulfin (24a) und Viopurpurin (24b), das mit Trichopurpurin<sup>25)</sup> identisch ist. Diese Verbindungen sind über die Abbausäuren 20a bzw. 20b (korrigierte Struktur) mit 16b und untereinander verbunden<sup>6)</sup>. Ferner läßt sich 23 in Aceton/Kaliumcarbonat in 24a überführen<sup>6)</sup> und durch Fremy-Salz-Oxidation in 16b.

Alle Farbstoffe der Xanthomegnin-Reihe haben ebenso wie Floccosin<sup>26)</sup> semi-Vioxanthin (7) oder ein 7-Derivat als Vorläufer und sind von daher biogenetisch einheitlich. Ähnliches findet man bei den Fusarium-Stoffwechselprodukten Aurofusarin (25) und Fuscofusarin, die sich von Rubrofusarin (26) ableiten<sup>27)</sup>. Analog der Synthese  $7 \rightarrow 16b$  lassen sich 26- in 25-Derivate überführen<sup>28)</sup>.

Ausgehend von **26**-Derivaten realisiert die Natur nicht nur die 7,7'-Verknüpfung wie in **25**, sondern auch die 9,9'- und 7,10'-Verknüpfung (Ustiłaginoidine, Cephalochromine, Aurosperon A)<sup>27,29</sup>. Bei 7-Derivaten überwiegt die 8,8'-Verknüpfung, wie sie außer in der Xanthomegnin-Reihe auch beim Viriditoxin<sup>30</sup> (**27**a, identisch mit SC-28762<sup>31</sup>) und SC-30532 (**27b**)<sup>32</sup> auftritt. Lediglich Xylindein (**28**)<sup>33</sup> ist – abgesehen von den Etherbrücken – ein Beispiel für die 6,6'-Verknüpfung.

Bei der Trennung des Farbstoff-Rohproduktes aus Medium 1 isolierten wir in geringer Menge die Begleitfarbstoffe A-2, B-2 und C-1 (Tab. 1). Während sich die beiden ersten Komponenten mit den vorliegenden Daten noch nicht zuordnen lassen, wurde C-1 als 3,4-Dehydroxanthomegnin (**29a**) identifiziert, die massenspektrometrisch gesicherte



Summenformel  $C_{30}H_{20}O_{12}$  besitzt zwei H-Atome weniger als die von **16b**. Im Carbonylbereich des IR-Spektrums unterscheidet sich **29a** an zwei Stellen von **16b**. Die Bande um 1730 cm<sup>-1</sup> ist stark verbreitert und bei 1648 cm<sup>-1</sup> tritt eine Absorption neu hervor. Insgesamt sind alle Banden bei **29a** schlechter aufgelöst. Aus dem <sup>1</sup>H-NMR-Spektrum (Tab. 2) wird deutlich, daß nur eine Molekülhälfte **16b** bzw. **9a** entspricht. Daneben gibt es eine zweite Gruppe von Signalen, zu denen ein Olefin-H ( $\delta = 6.36$ ) und eine olefinische Methylgruppe ( $\delta = 2.33$ ) gehören, sie zeigen die Dehydrierung in einem der Lactonringe an. Als Folge ist das Signal der 10-Hydroxygruppe ( $\delta = 4.17$  für 7-OCH<sub>3</sub>) nicht von den Signalen der anderen Molekülhälfte abweicht. Im leicht zugänglichen Diacetat **29b** unterscheiden sich die Aromat-H-Signale der beiden Molekülhälften wesentlich deutlicher ( $\delta = 7.34$  für 5-H und  $\delta = 7.93$  für 5'-H).

Die Farbstoffe der Xanthomegnin-Reihe haben an C-3 (bzw. C-3') wie semi-Vioxanthin (7) R-Konfiguration. Dies ergibt sich wie folgt: 1. Xanthomegnin (16b) wird aus optisch einheitlichem 7 synthetisiert. Die CD-Spektren von nativem und synthetischem Präparat zeigen dem semi-Xanthomegnin (9a) vergleichbare Cotton-Effekte. 2. Das CD-Spektrum des Viomelleins (23, Abb. 1) setzt sich aus den Einzelspektren für 7 bzw. 9a zusammen, die Chiralitätszentren der Molekülhälften sind somit gleich konfiguriert. 3. Rubrosulfin (24a) geht aus Viomellein (23) hervor<sup>6</sup>, beim Viopurpurin (24b) steht die stereochemische Verknüpfung für C-3' noch aus. C-3 in 24a und 24b ist über die Abbausäuren 20a bzw. 20b mit 16b korreliert<sup>6</sup>). 4. Vioxanthin (3) stimmt im langwelligen Bereich des CD-Spektrums (330 – 400 nm) mit 7 überein.

Eine axiale Chiralität ließ sich bislang nur bei 3 eindeutig nachweisen<sup>7b)</sup>. Sein CD-Spektrum weist zwei ausgeprägte Cotton-Effekte mit entgegengesetztem Vorzeichen bei 261 nm ( $[\Theta]^{25} = -207000$ ) und 279 nm (+172000) auf. Der Nulldurchgang bei 271 nm stimmt mit der Lage des negativen Cotton-Effektes von 7 (270 nm; -27000) überein. Aufgrund des Vorzeichenwechsels der Cotton-Effekte in Abhängigkeit von der Wellenlänge vermuten wir, daß 3 S-Konfiguration besitzt<sup>34)</sup>. Da seine <sup>1</sup>H-NMR-Signale scharf sind, sollte es optisch einheitlich sein.

Beim Xanthomegnin (16b) und Viomellein (23) fehlen entsprechend ausgeprägte Maxima im CD-Spektrum, d. h. die Präparate sind Diastereomeren-Gemische. Im Einklang damit ist das <sup>1</sup>H-NMR-Signal der chelierten phenolischen Hydroxygruppe deutlich aufgespalten <sup>6)</sup>. Sofern die Mikroorganismen optisch einheitliches 16b bzw. 23 produzieren, müßte bei der Isolierung der Farbstoffe Racemisierung eingetreten sein. Je nach Aufarbeitungsbedingungen sollte der Anteil der Diastereomeren in den Präparaten schwanken. Hinweise dafür ergeben sich daraus, daß synthetisches 16b im CD-Spektrum schwächere Cotton-Effekte bei 310 und 270 nm zeigt als natives 16b und daß die IR-Spektren der Präparate erst übereinstimmen, wenn natives 16b in Toluol gekocht wurde. Bemerkenswert ist ferner, daß auch nach der Äquilibrierung in Toluol die Signale der chelierten Hydroxygruppen unterschiedliche Intensität aufweisen, sich die 16b-Diastereomeren somit offenbar in ihrem Energieinhalt unterscheiden.

Das mit 16b vergleichbare Aurofusarin (25)<sup>27)</sup> ist optisch inaktiv, die Ustilaginoidine dagegen sind aktiv<sup>35)</sup>, ebenso SC-30532 (27b)<sup>32)</sup>. Letzteres ist aufgrund seiner Cotton-Effekte im CD-Spektrum bezüglich der axialen Chiralität jedoch enantiomer zu 3. Insgesamt fällt auf, daß die Behinderung der Rotation bei Bichinon-Derivaten deutlich schwächer ist als bei vergleichbaren Biaryl-Derivaten.

#### Zur biologischen Aktivität

Die Verbindungen der Xanthomegnin-Reihe hemmen das Wachstum von grampositiven und gram-negativen Bakterien (Tabb. 5 und 6). Es fällt im Verdünnungsreihen-Hemmtest die geringe Empfindlichkeit des anaeroben Keims auf und die stark verminderte Wirksamkeit der Monomeren 7 und 9a gegen *E. coli* und *S. aureus*. Vioxanthin (3) erreicht von den, untersuchten Verbindungen die kleinsten MIC-Werte. Im Plattendiffusionstest werden die Ergebnisse stark vom Diffusionsverhalten der Substanzen bestimmt, dadurch ergeben sich in der Wirkhöhe andere Abstufungen. Bei Verwendung von chemisch definierten statt komplexen Nährböden für die Testkeime ändern sich die Werte nicht. Dies steht mit dem Befund in Einklang, daß Xanthomegnin (16b) die oxidative Phosphorylierung in Rattenleber-Mitochondrien beeinflußt<sup>36)</sup>. Synthetisches und natives 16b sind im Plattendiffusionstest gleich aktiv.

|                        | B. subt.  | E. coli   | S. aureus  | Clostr.<br>past. | Candida<br>albicans |
|------------------------|-----------|-----------|------------|------------------|---------------------|
| Vioxanthin (3)         | 0.1-0.03  | 0.3 - 0.1 | 0.1 - 0.03 | 10               | > 10                |
| Viomellein (23)        | 1 0.7     | 1 - 0.7   | 1 - 0.3    | 7 - 5            | >10                 |
| semi-Vioxanthin (7)    | 1 - 0.7   | 10 - 7    | > 10       | >10              | >10                 |
| semi-Xanthomegnin (9a) | 0.3 - 0.1 | 3-1       | 7 - 3      | >10              | >10                 |

Tab. 5. Antimikrobielle Wirkung im Verdünnungsreihen-Hemmtest (minimale Hemmkonzentration = MIC in  $\mu$ g/ml)

Tab. 6. Hemmhofdurchmesser (mm) im Plattendiffusionstest bei verschiedenen Testkeimen  $(c_1 = 1 \text{ mg/ml}, c_2 = 0.1 \text{ mg/ml})$ 

|                        | B. su                 | btilis                | Ε.    | coli  |
|------------------------|-----------------------|-----------------------|-------|-------|
|                        | <i>c</i> <sub>1</sub> | <i>c</i> <sub>2</sub> | $c_1$ | $c_2$ |
| Vioxanthin (3)         | 22                    | 18                    | 18    | 16    |
| Xanthomegnin (16b)     | 20                    | 17                    | 16    | 13    |
| Viomellein (23)        | 24                    | 23                    | 17    | 16    |
| semi-Vioxanthin (7)    | 15                    | 13                    | 14    | 13    |
| semi-Xanthomegnin (9a) | 24                    | 17                    | 25    | 17    |

Einige der Verbindungen wurden auch an Arthropoden getestet. Bei Spinnmilben (*Tetranychus urticae* KOCH) und Blattläusen (*Aphis fabae* SCOP.) konnte keine Beeinflussung der Lebensdauer und Vermehrung nachgewiesen werden. Xanthomegnin (**16b**) und Viomellein (**23**) ließen in Versuchen mit dem Mexikanischen Bohnenkäfer (*Eplilachna varivestis* MULS.) fraßhemmende Wirkung erkennen. Ferner wurde die Entwicklung und Vermehrung dieser Käfer stark gehemmt bzw. vermindert<sup>37</sup>). semi-Vioxanthin (7) zeigte diese Wirkung nicht mehr.

Der Deutschen Forschungsgemeinschaft danken wir für die Förderung unserer Arbeiten.

## Experimenteller Teil

Die Schmelzpunkte wurden in offener Kapillare bestimmt (Berl-Block) und sind nicht korrigiert. – IR-Spektren: Perkin-Elmer, Modell 21 (KBr-Preßlinge, angegeben sind nur CO- und C=C-Valenzschwingungsbanden im Bereich 1800–1550 cm<sup>-1</sup>); UV-Spektren: Zeiss DMR 21; <sup>1</sup>H-NMR-Spektren: Varian HA 100 (Tetramethylsilan als interner Standard); <sup>13</sup>C-NMR-Spektren: Varian XL 100; Massenspektren: Varian MAT 731 (70 eV, Hochauflösung mit Perfluorkerosin als Vergleichssubstanz); CD-Spektren: Varian Cary 61. – Dünnschichtchromatographie (DC): DC-Alufolien (Kieselgel 60 F 254, Merck), die zuvor in 0.5 N Oxalsäure getaucht, getrocknet und 2 h bei 105 °C aktiviert wurden. Absolutwerte (Tab. 1) bestimmte man an 10 × 20-cm-Platten bei einer Laufstrecke des Lösungsmittelsystems von 12 cm. Präparative Schichtchromatographie (PDC): 55 g Kieselgel P/UV<sub>254</sub> (Macherey Nagel) rührte man in 120 ml Wasser oder 0.5 N Oxalsäure auf, goß mit der blasenfreien Suspension eine 20 × 40-cm-Glasplatte, ließ über Nacht an der Luft trocknen und aktivierte 3 h bei 105 °C. Säulenchromatographie (SC): Kieselgel 60 (unter 0.063 mm, Merck); Oxalsäure-Kieselgel (Kieselgel 60 mit Oxalsäure imprägniert, unter 0.07 mm, Macherey Nagel).

Produzentenstamm: Der Pilzstamm Tü 553 wurde aus einer afrikanischen Bodenprobe (Savanne in Guinea) isoliert und als Penicillium citreo-viride Biourge<sup>38)</sup> bestimmt. Der Pilz ließ sich auf M-2-Agar (1% Malzextrakt, 0.4% Glucose, 0.4% Hefeextrakt, 2% Agar; 14 d bei 27°C) kultivieren. Konidiensuspensionen (10<sup>8</sup> Keime pro ml 0.9proz. NaCl-Lösung) wurden bei -22°C aufbewahrt.

Fermentationen: a) Agar-Kulturen dienten zur Beimpfung von 1-l-Schüttelkolben mit je 150 ml Nährlösung (Medium 1: 1% Malzextrakt, 0.4% Glucose, 0.4% Hefeextrakt). Mit 10–15 Schüttelkolben wurden nach 3–4d 1201 Nährlösung (Medium 1) beimpft, die zusätzlich 150 ml Antischaummittel (Niax-Polyol PG 2025, Union Carbide) enthielten. Unter Rühren und starker Belüftung (200 l/min) setzte starke Mycelbildung ein. Die Farbe wechselte innerhalb von 70 h von Gelbbraun nach Rotviolett. Der pH-Wert der Kultur fiel zunächst stark ab (pH 5, eingestellt auf pH 6.5 mit NaOH) und stieg am letzten Tag bis pH 7.3. Im Plattendiffusionstest gegen *B.* subtilis war am Ende ein Hemmhof von 14–15 mm Durchmesser sichtbar.

b) In einer veränderten Nährlösung (Medium 2: 6% Mannit, 1.5% Glutaminsäure, 0.75% Ammoniumsulfat, 0.9% NaCl, 0.6%  $K_2HPO_4$ , 0.3% MgSO<sub>4</sub> · 7 H<sub>2</sub>O, 0.12% CaCl<sub>2</sub>, 0.006% FeSO<sub>4</sub> · 7 H<sub>2</sub>O, 0.003% ZnSO<sub>4</sub> · 7 H<sub>2</sub>O) wurde der Stamm von 1-l-Schüttelkolben über 20-l-Fermenter im 200-l-Maßstab durch Überimpfen angezogen. Im 200-l-Fermenter (Giovanola Freres, Typ B 200, Umwurfsystem) wurde bei 800 Upm mit 100 l/min belüftet und 70 h bei 27°C (pH 6.6, konstant) kultiviert. Als Antischaummittel diente bei Bedarf Silikonöl (mit 10% Polypropylenglycol).

Aufarbeitung: a) Die mit HCl auf pH 4.5 eingestellte Kultur (Medium 1) versetzte man mit 5 kg Hyflo-Celite und trennte die festen Bestandteile in einer Filterpresse vom Kulturfiltrat, das verworfen wurde. Den rotvioletten Mycelkuchen extrahierte man mit 901 Aceton, engte den rotbraunen Extrakt auf ca. 3 l ein und extrahierte das wäßrige Konzentrat erschöpfend mit Chloroform. Die getrocknete organische Phase hinterließ einen dunklen, öligen Verdampfungsrückstand, der beim Übergießen mit 12 l Petrolether fest wurde. Der Niederschlag wurde abgesaugt, mit Seesand verrieben und 48 h mit Petrolether im Kreisprozeß entfettet. Die Farbstoffe wurden mit Chloroform reextrahiert und fielen nach Verdampfen des Lösungsmittels als rotbraunes Pulver an. Ausb. 32 g Rohprodukt.

b) Die mit HCl angesäuerte Kultur (Medium 2, pH 4-5) wurde mit einer Filterpresse in Kulturfiltrat und Mycel getrennt. Aus dem Filtrat reicherte man die gefärbten Inhaltsstoffe durch Adsorption an Amberlite XAD-2 (Säule  $100 \times 20$  cm), Waschen mit 2401 Wasser und Elution mit 201 Aceton an. Das feuchte Mycel wurde viermal mit Aceton (25 l, dann dreimal 10 l) extrahiert, der Extrakt mit dem Säuleneluat (s. o.) vereinigt und i. Vak. eingeengt. Die weitere Aufarbeitung erfolgte wie unter a). Ausb. 62 g schwarzbraunes, pulvriges Rohprodukt.

Bestimmung der biologischen Aktivität: a) Für den Verdünnungsreihen-Hemmtest ging man von einer Stammlösung der Substanzen in Dimethylsulfoxid aus und prüfte im Bereich 0.03 bis 10 µg/ml. Das Lösungsmittel hemmte in der höchsten Konzentration keinen der Testkeime. – Escherichia coli (K-12) und Bacillus subtilis (ATCC 6051) wurden in einem Medium nach Davis und Mingioli, verändert nach Thein<sup>39</sup>, 16 h bei 37 °C gezogen. Staphylococcus aureus (Z 2070) wuchs in folgendem Nährboden: 1% Oxoid 'Lab-Lemco' Fleischextrakt, 1% Difco Bacto-Peptone, 0.5% NaCl 5, pH 7.2 mit NaOH eingestellt, 16 h bei 37 °C. Clostridium pasteurianum (Winogradsky-ATCC 6013), Nährlösungen und Testverfahren nach Santo<sup>40</sup>. Candida albicans (Stamm Tü 565) wuchs in 0.4% Difco Hefeextrakt, 1% Difco Malzextrakt, 0.4% Glucose (37 °C, 16 h).

b) Für den Plattendiffusionstest wurden die Substanzen in Chloroform gelöst und mit dem Lösungsmittel weiter verdünnt. 9-mm-Filter-Plättchen (Schleicher & Schüll) wurden mit der Testlösung gut angefeuchtet, an der Luft getrocknet und auf den Agar der Testplatte aufgelegt. *Bacillus subtilis* und *Escherichia coli* wuchsen auf synthetischem Agar der folgenden Zusammensetzung: 8% Glucose, 0.4% Ammoniumnitrat, 0.5% NaCl, 0.1% MgSO<sub>4</sub>, 0.2% K<sub>2</sub>HPO<sub>4</sub>, 0.02% CaCl<sub>2</sub>, MnSO<sub>4</sub> (10 mg/l), Ferrioxamin (20 mg/l), 2% Agar, pH 7.

Grobtrennung: 20 g Rohprodukt von Medium 1 chromatographierte man an 1 kg Oxalsäure-Kieselgel (Säule  $40 \times 8.0$  cm) im System Chloroform/10% Aceton (mit Oxalsäure gesättigt). Bei einem Durchfluß von 80 ml/h bildeten sich drei Zonen, die nicht scharf getrennt waren und nacheinander eluiert wurden: A) blaßgrüne Vorzone, 300 mg graugrünes Pulver; B) rotbraun, 2 g dunkelrotbraunes Pulver; C) rote bis dunkelrote Hauptzone, 11 g dunkelrotes Pulver. Weitere unterschiedlich gefärbte Zonen am Kopf der Säule wurden nicht eluiert.

*Woxanthin* (3): 300 mg Substanz aus Zone A wurden an einer 65 × 2.2-cm-Säule aus Oxalsäure-Kieselgel mit Chloroform/5% Aceton nachgetrennt, dabei bildeten sich zwei Zonen (von unten gezählt): 1. blaßgrün, 2. rotbraun. Das aus Zone 1 eluierte 3 fällte man durch Eintropfen einer konzentrierten Chloroformlösung in n-Pentan und erhielt ein gelbgrünes Pulver, das sich ab 250°C unter Dunkelfärbung zersetzt. 3 färbt sich mit Eisen(III)-chloridlösung intensiv grün. Ausb. 165 mg. – IR: 1637, 1582 cm<sup>-1</sup>. – UV: s. Tab. 3. – <sup>1</sup>H-NMR: s. Tab. 2. – CD-Spektrum (Cyclohexan/5% Dioxan):  $\lambda_{max}$  ([ $\Theta$ ]<sup>25</sup>) = 388 (+28000), 372 (+22000), 334 (+10000), 279 (+172000), 261 (-207000), 231 (-18000), 223 nm (-30000).

C<sub>30</sub>H<sub>26</sub>O<sub>10</sub> Molmasse Ber. 546.1526 Gef. 546.1526 (MS)

Die aus Zone 2 eluierte rotbraune Substanz (A-2) gibt mit Eisen(III)-chloridlösung eine Farbvertiefung nach Rot. A-2 löst sich mäßig in Chloroform. Ausb. 70 mg. – IR (CO): 1770, 1695 (sh), 1658, 1613 (sh), 1605 (sh) cm<sup>-1</sup>.

Viomellein (23): 2 g Substanz aus Zone B wurden an Oxalsäure-Kieselgel (Säule  $65 \times 3.2$  cm) mit Chloroform/5% Aceton chromatographiert. Es bildete sich eine rotbraune Vorzone (A-2 enthaltend), eine rotbraune Hauptzone sowie eine lachsrote Nachzone. Das aus der Hauptzone eluierte 23 kristallisierte aus Chloroform/Petrolether (1:1) beim Einengen. Gelbrote Mikrokristalle, die sich ab 250 °C unter Dunkelfärbung zersetzen. Ausb. 1.8 g. 23 färbt sich mit Eisen(III)chloridlösung rot. Zur Analyse wurde 48 h bei 70 °C i. Hochvak. getrocknet.  $[\alpha]_{D}^{20} = -12.6^{\circ}$ (c = 1.0, Chloroform). – IR: 1733, 1675, 1634, 1592 (sh) cm<sup>-1</sup>. – UV: s. Tab. 3. – <sup>1</sup>H-NMR: s. Tab. 2. – CD-Spektrum (Dioxan, vgl. Abb. 1):  $\lambda_{max} ([\Theta]^{25}) = 363 (+1300), 306 (-14400),$ 280 (+7000), 270 (-6600), 260 nm (-1000). – MS: m/e = 562 (M + 2); Ber. 562.1475 Gef. 562.1475 (Hochauflösung).

C<sub>30</sub>H<sub>24</sub>O<sub>11</sub> (560.5) Ber. C 64.28 H 4.32 2 CH<sub>3</sub>O 11.07 Gef. C 63.93 H 4.53 CH<sub>3</sub>O 11.00

Die aus der Nachzone eluierte Substanz (B-2) wurde nicht näher untersucht. Ausb. 50 mg. – IR: 1730, 1681, 1639, 1621 (sh) cm<sup>-1</sup>.

3,4-Dehydroxanthomegnin (29a): 5.5 g Substanz aus Zone C wurden an Oxalsäure-Kieselgel (Säule 65 × 4.2 cm) mit Chloroform/5% Aceton chromatographiert. Es bildete sich eine lachsrote Vorzone (C-1 = 29a) sowie eine rote Hauptzone (C-2 = 16b). Das aus der Vorzone eluierte 29a wurde unter denselben Bedingungen weiter gereinigt und dann aus einer konzentrierten Chloroformlösung mit n-Pentan ausgefällt. Dunkelrotes, amorphes Pulver, ab 150°C Zers. (Dunkelfärbung). Ausb. 45 mg. 29a ist in Chloroform mäßig, in Benzol oder Methanol schwer löslich, mit Eisen(HI)-chloridlösung färbt es sich tiefrot. – IR: 1733, 1675, 1648, 1610, 1585 (sh) cm<sup>-1</sup>. – UV (Methanol):  $\lambda_{max} (\varepsilon) = 434$  (sh, 7600), 390 (9100), 276 (sh, 20200), 246 nm (sh, 35100); 0.1 N methanol. NaOH:  $\lambda_{max} (\varepsilon) = 552 (9500)$ , 365 (5400), 300 (sh), 280 (sh), 253 nm (28100). – <sup>1</sup>H-NMR: s. Tab. 2.

C30H20O12 Molmasse Ber. 572.0955 Gef. 572.0955 (MS)

3,4-Dehydroxanthomegnin-diacetat (29b): 57 mg (0.1 mmol) 29a acetylierte man in 4 ml Acetanhydrid/1 ml Pyridin 15 h bei Raumtemp., hydrolysierte mit 30 ml Eiswasser und saugte den ausgefallenen braunen Niederschlag ab. Das Reaktionsprodukt wurde an Kieselgel (Säule  $20 \times 1.5$  cm) mit Benzol/Ether/Aceton (10:10:1) chromatographiert. Aus der rasch wandernden gelben Hauptzone eluierte man 30 mg (45%) **29b**, das zur Aufnahme der Spektren diente. – IR: 1779, 1739, 1681, 1653,  $1605 \text{ cm}^{-1}$ . – <sup>1</sup>H-NMR: s. Tab. 2.

C<sub>34</sub>H<sub>24</sub>O<sub>14</sub> Molmasse Ber. 656.1166 Gef. 656.1167 (MS)

*Xanthomegnin* (16b): Das aus der roten Hauptzone von Fraktion C eluierte 16b (= C-2) kristallisierte aus Chloroform bei Zugabe von Tetrachlorkohlenstoff (bis zur Trübung) in gelbroten Plättchen, die sich ab 264 °C zersetzten (Dunkelfärbung). Ausb. 5 g. Zur Analyse wurde 72 h bei 140 °C i. Hochvak. getrocknet. – IR (vgl. Abb. 2): 1718, 1681, 1618, 1595 cm<sup>-1</sup>. – UV: s. Tab. 3. – <sup>1</sup>H-NMR: s. Tab. 2. – CD-Spektrum (Dioxan):  $\lambda_{max}$  ( $[\Theta]^{25}$ ) = 310 (–26800), 272 nm (+11600).

3,4-Dihydro-9,10-dihydroxy-7-methoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran (7, semi-Vioxanthin): 20 g Rohprodukt von Medium 2 wurde an 1 kg Oxalsäure-Kieselgel (Säule 40 × 8.0 cm) mit Chloroform/10% Aceton chromatographiert. Das aus der rasch wandernden grünen Hauptzone eluierte 7 kristallisierte aus Chloroform/Ethanol (1:1) beim Einengen in blaßgrünen, faserigen Nadeln vom Schmp. 185 °C. Ausb. 8 g. 7 ist in Benzol, Chloroform oder Tetrahydrofuran gut, in Aceton oder Ethanol mäßig löslich, in Wasser unlöslich. Im DC (Kieselgel) fluoresziert es bei 366 nm hellgrün und färbt sich mit Eisen(III)-chloridlösung intensiv grün. Zur Analyse wurde 48 h bei 70 °C i. Hochvak. getrocknet. – IR: 1644, 1587 cm<sup>-1</sup>. – UV: s. Tab. 3. – <sup>1</sup>H-NMR: s. Tab. 2. – <sup>13</sup>C-NMR: s. Tab. 4. – CD-Spektrum (Cyclohexan/5% Dioxan):  $\lambda_{max}$  ( $[\Theta]^{25}$ ) = 378 (+4300), 363 (+4500), 327 (+2000), 270 (-27000), 248 (+5500), 222 nm (-26000). – MS (70 eV): m/e = 274 (100%, M<sup>+</sup>), 256 (47%, M – H<sub>2</sub>O).

 $C_{15}H_{14}O_5$  (274.3) Ber. C 65.67 H 5.15 1 CH<sub>3</sub>O 11.31 Gef. C 65.76 H 5.11 CH<sub>3</sub>O 11.42

Von der dunkel gefärbten Säule wurden nach 7 noch 200 mg Viomellein (23) und 1 g Xanthomegnin (16b) eluiert, die, chromatographisch gereinigt (s. o.), im IR-Spektrum mit authentischen Präparaten von Medium 1 übereinstimmten.

9,10-Diacetoxy-3,4-dihydro-7-methoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran (**8a**, semi-Vioxanthin-diacetat): Eine Lösung von 100 mg (0.36 mmol) **7** in 4 ml Pyridin/12 ml Acetanhydrid rührte man 15 min bei 60 °C, dann 15 h bei Raumtemp. und hydrolysierte überschüss. Acetanhydrid mit 30 ml Eiswasser. Der ausgeflockte farblose Niederschlag wurde abgesaugt, über KOH getrocknet und an Kieselgel (Säule 20 × 2.5 cm) mit Chloroform/10% Methanol chromatographiert. Das aus der farblosen, im UV-Licht blau fluoreszierenden Hauptzone eluierte **8a** kristallisierte in farblosen Nadeln (Chloroform/Petrolether-Zugabe bis zur ersten Trübung) vom Schmp. 204 °C. Ausb. 110 mg (85%). – IR: 1767, 1715, 1631, 1572 cm<sup>-1</sup>. – UV (Methanol):  $\lambda_{max}$  (ε) = 316 (7800), 254 nm (42000). – <sup>1</sup>H-NMR: s. Tab. 2.

C19H18O7 Molmasse Ber. 358.1052 Gef. 358.1053 (MS)

3,4-Dihydro-9-hydroxy-7,10-dimethoxy-3-methyl-1-oxo-1H-naphtho[2,3-c/pyran (**8b**, semi-Vioxanthin-methylester): Zu einer Lösung von 100 mg (0.36 mmol) 7 in Chloroform tropfte man bei 0°C 1 ml 0.4 M ether. Diazomethanlösung und brachte nach 30 min i. Vak. zur Trockene. Der Verdampfungsrückstand wurde an Kieselgel (Säule 20 × 2.5 cm) mit Chloroform/5% Methanol chromatographiert. Dicht hinter unumgesetztem 7 wanderte **8b**, das aus der Hauptzone als farblose Substanz mit Schmp. 146°C eluiert wurde. **8b** fluoresziert im UV-Licht hellblau. – IR: 1712, 1637, 1575 cm<sup>-1</sup>. – UV (Methanol):  $\lambda_{max}(\varepsilon) = 357$  (6000), 298 (sh), 242 nm (43900). – <sup>1</sup>H-NMR: s. Tab. 2.

> $C_{16}H_{16}O_5$  (288.3) Ber. C 66.66 H 5.59 Molmasse 288.0998 Gef. C 66.35 H 5.39 288.0998 (MS)

9-Acetoxy-3,4-dihydro-7,10-dimethoxy-3-methyl-1-oxo-1H-naphtho[2,3-c/pyran (8c): 100 mg (0.35 mmol) 8b löste man in 2 ml Pyridin/6 ml Acetanhydrid, rührte 15 h bei Raumtemp. und hydrolysierte mit 20 ml Eiswasser. Der farblose Niederschlag wurde abgesaugt und an Kieselgel (PDC, 2 Platten) mit Chloroform/10% Methanol chromatographiert. Aus der Hauptzone (im UV-Licht als Schatten sichtbar) eluierte man mit Methanol farbloses 8c, das aus Chloroform nach Zugabe von Petrolether (bis zur Trübung) kristallisierte. Schmp. 217°C. Ausb. 105 mg (90%). – IR: 1767, 1631, 1575 cm<sup>-1</sup>. – UV (Methanol):  $\lambda_{max}(\varepsilon) = 294$  (7500), 235 nm (53 600). – <sup>1</sup>H-NMR: s. Tab. 2.

C<sub>18</sub>H<sub>18</sub>O<sub>6</sub> (330.3) Ber. C 65.45 H 5.49 Molmasse 330.1103 Gef. C 65.72 H 5.48 330.1103 (MS)

9-Acetoxy-3,4-dihydro-10-hydroxy-7-methoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran(8d, semi-Vioxanthin-monoacetat): Eine Lösung von 50 mg (0.15 mmol) 8c in 4 ml Chloroform wurde mit 135 mg wasserfreiem Aluminium(III)-bromid (suspendiert in 2 ml Chloroform) versetzt und bei Raumtemp, gerührt. Die Lösung färbte sich tiefgelb und zeigte eine am Tageslicht erkennbare grüne Fluoreszenz. Nach 10 min schüttelte man mit 20 ml eisgekühlter 1 N HCl und extrahierte die gelb gewordene wäßrige Phase in den nächsten 15 min viermal mit je 20 ml Chloroform. Die vereinigten Chloroformextrakte wurden über Natriumsulfat getrocknet und eingedampft. Der Rückstand trennte sich an Kieselgel (PDC, Chloroform/10% Methanol) in drei Zonen, von denen die beiden langsamen 8c und 7 enthielten ( $R_{\rm F}$ -Wert-Vergleich), während aus der rasch wandernden Hauptzone farbloses 8d eluiert wurde. Schmp. 191 °C. Ausb. 19 mg (40%). – IR: 1773, 1639, 1623 (sh), 1585 cm<sup>-1</sup>. – UV (Methanol):  $\lambda_{\rm max}(\varepsilon) = 352$  (6300), 319 (sh), 305 (5500), 261 nm (494000). – <sup>1</sup>H-NMR: s. Tab. 2.

# C17H16O6 Molmasse Ber. 316.0947 Gef. 316.0947 (MS)

3,4,6,9-Tetrahydro-10-hydroxy-7-methoxy-3-methyl-1,6,9-trioxo-1H-naphtho[2,3-c]pyran (9a, semi-Xanthomegnin): Zu einer Suspension von 1.0 g semi-Vioxanthin (7) in 50 ml Aceton gab man portionsweise eine Lösung von 5.0 g Fremy-Salz in 150 ml 0.1 M Phosphatpuffer (pH 5.6) und rührte 2.5 h bei Raumtemp. Die Festsubstanz im Reaktionsgemisch färbte sich über Gelb nach Dunkelbraun und wurde am Ende mit Chloroform (viermal je 100 ml) extrahiert. Die vereinigten organischen Phasen wurden mit reichlich Wasser gewaschen, über Natriumsulfat getrocknet und i. Vak. eingedampft. Der rote Rückstand (900 mg) trennte sich an Oxalsäure-Kieselgel (PDC, 6 Platten, Chloroform/10% Aceton) in drei Zonen (nach steigendem  $R_{\rm F}$ -Wert beziffert): 1. blaßgelb, im UV-Licht gelb fluoreszierend, 2. lachsfarben, 3. gelb, Hauptzone. Das aus Zone 3 eluierte 9a kristallisierte aus Chloroform bei Aceton-Zugabe bis zur Trübung in orangeroten Nadeln, ab 226°C Zers. Ausb. 790 mg (75%). Zur Analyse wurde 20 h bei 70°C i. Hochvak. getrocknet. – IR: 1730, 1690, 1672, 1618, 1600 cm<sup>-1</sup> (sh). – UV: s. Tab. 3. – <sup>1</sup>H-NMR: s. Tab. 2. – <sup>13</sup>C-NMR: s. Tab. 4. – CD-Spektrum (Dioxan, s. Abb. 1):  $\lambda_{max}$  ([ $\Theta$ ]<sup>25</sup>) = 305 (–20000), 270 nm (+8000).

C<sub>15</sub>H<sub>12</sub>O<sub>6</sub> (288.3) Ber. C 62.48 H 4.20 1 CH<sub>3</sub>O 10.76 Gef. C 62.40 H 4.20 CH<sub>3</sub>O 10.51

10-Acetoxy-3,4,6,9-tetrahydro-7-methoxy-3-methyl-1,6,9-trioxo-1H-naphtho[2,3-c]pyran (9b): 50 mg (0.17 mmol) 9a löste man in 2 ml Pyridin/6 ml Acetanhydrid, rührte 15 min bei 60°C, dann 15 h bei Raumtemp. und hydrolysierte mit 30 ml Eiswasser. Der ausgefallene gelbliche Niederschlag wurde abgesaugt, über KOH getrocknet und an Oxalsäure-Kieselgel (PDC, Chloroform/10% Aceton) chromatographiert. Aus der Hauptzone eluierte man mit Aceton hellgelbes 9b. Ausb. 46 mg (80%). – IR: 1776, 1730, 1689, 1653, 1621, 1605 cm<sup>-1</sup>. – <sup>1</sup>H-NMR: s. Tab. 2. – MS (70 eV): m/e = 332 (4%, M + 2), 330 (1%, M<sup>+</sup>), 290 (45%, M + 2 – 42), 288 (70%, M – 42), 272 (17%), 244 (66%).

C17H14O7 Molmasse Ber. 330.07395 Gef. 330.07396 (MS)

3,4,6,9-Tetrahydro-7,10-dihydroxy-3-methyl-1,6,9-trioxo-1H-naphtho[2,3-c]pyran (9c): Zu einer Suspension von 5.0 g wasserfreiem Aluminium(III)-chlorid in 100 ml Chloroform gab man eine

Lösung von 200 mg (0.7 mmol) **9a** in 20 ml Chloroform und erhitzte 5 min unter Rückfluß. Die Reaktionsmischung verfärbte sich rot und es flockte ein rotbrauner Niederschlag aus, det sich bei Zugabe von 100 ml eisgekühlter 1 N HCl in der wäßrigen Phase rotbraun löste. Das zweiphasige Reaktionsgemisch wurde kurz auf 60 °C erwärmt und nach dem Abkühlen kräftig geschüttelt. Nach Trennung der Phasen extrahierte man die wäßrige noch mehrfach mit Chloroform, vereinigte alle organischen Phasen und befreite i. Vak. vom Lösungsmittel. Der Rückstand (190 mg) wurde an Oxalsäure-Kieselgel (PDC, Chloroform/10% Aceton) chromatographiert. Aus der gelben Hauptzone eluierte man 170 mg (90%) einheitliches **9c**, das aus Chloroform (mit wenig Eisessig versetzt) in dunkelgelben Nadeln kristallisierte, die sich ab 215 °C zersetzten. **9c** ist in Chloroform, Aceton oder Methanol nur mäßig löslich. Zur Analyse wurde 18 h bei 80 °C i. Hochvak. getrocknet. – IR: 1724 (sh), 1704, 1684, 1621, 1605 (sh), 1592 cm<sup>-1</sup>. – UV (Methanol):  $\lambda_{max}$  (ε): 490 (2100), 378 (2800), 274 (17200), 233 nm (12200); (Methanol/HCl):  $\lambda_{max}$  (ε) = 418 (3000), 390 (sh), 289 (7000), 225 nm (21000); (Methanol/NaOH):  $\lambda_{max}$  (ε) = 525 (2300), 450 (1900), 390 (1800), 300 (sh), 269 (15100), 245 nm (sh). – <sup>1</sup>H-NMR: s. Tab. 2. – MS (70 eV): m/e = 276 (11%, M + 2), 274 (64%, M<sup>+</sup>), 230 (100%), 202 (19%), 146 (8%).

C14H10O6 (274.2) Ber. C 61.32 H 3.68 Gef. C 61.48 H 3.69

9-Acetoxy-3,4-dihydro-6,10-dihydroxy-7-methoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran (12b): Eine Lösung von 40 mg 9b in 0.5 ml Chloroform verdünnte man mit 10 ml Diethylether, versetzte im Scheidetrichter mit 30 ml gesättigter, wäßriger Natriumdithionitlösung, schüttelte 10 min kräftig durch und extrahierte die wäßrige Phase dreimal mit je 30 ml Ether. Die blaßgrüne organische Phase wurde mit Wasser gewaschen, über Natriumsulfat getrocknet und hinterließ einen blaß gelbgrünen Verdampfungsrückstand, der im Dünnschichtchromatogramm (Kieselgel, Chloroform/5% Methanol) einheitlich war und im UV-Licht intensiv blau fluoreszierte. Für die Aufnahme von Spektren wurde das Präparat nicht weiter gereinigt. – IR: 1761, 1667 (sh), 1650, 1631 (sh) cm<sup>-1</sup>. – <sup>1</sup>H-NMR: s. Tab. 2.

3,4-Dihydro-6,9,10-trihydroxy-7-methoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran (17b): Eine Lösung von 400 mg 9a in 2 ml Chloroform und 30 ml Ether schüttelte man 5 min mit 30 ml frisch bereiteter 5proz. wäßriger Natriumdithionitlösung. Die mit Wasser gewaschene, hellgelbe, blau fluoreszierende organische Phase gab beim Eindampfen 380 mg blaßgelbes 17b, das aus Chloroform/Tetrachlorkohlenstoff (5:1) beim Einengen in kurzen Nadeln kristallisierte, ab 176 °C Zers. (Dunkelfärbung). – IR (CO, C=C): 1661 (sh), 1639,1594 cm<sup>-1</sup>.

3,4-Dihydro-6,10-dihydroxy-7,9-dimethoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran(17c): In eine Lösung von 340 mg rohem 17b in 40 ml Methanol leitete man bei 50°C 30 min trockenen Chlorwasserstoff ein und befreite die dann dunkelgelbe Lösung i. Vak. vom Lösungsmittel. Der Rückstand wurde an Oxalsäure-Kieselgel (PDC, 3 Platten, Chloroform/3% Methanol) chromatographiert. Von schwarzer Substanz am Start trennten sich zwei gelbe Zonen: Die schneller wandernde (gelbgrün fluoreszierend) enthielt 130 mg unverändertes 17b ( $R_{\rm F}$ -Wert, IR-Spektrum), das aus der langsamer wandernden (blaugrün fluoreszierend) eluierte 17c kristallisierte aus Chloroform/Methanol (5:1) beim Einengen in moosgrünen Nadeln vom Schmp. 165°C (Zers.). Ausb. 160 mg (72%, bezogen auf umgesetztes 17b). – IR: 1629,1592 (sh) cm<sup>-1</sup>. – <sup>1</sup>H-NMR: s. Tab. 2. – MS: m/e = 305 (19%, M + 1), 304 (100%, M<sup>+</sup>), 289 (25%, M – CH<sub>3</sub>), 243 (22%), 242 (28%).

 $\begin{array}{ccc} C_{16}H_{16}O_6 \ (304.3) & \mbox{Ber. C } 63.15 \ \mbox{H } 5.30 \ \mbox{Molmasse } 304.0947 \\ & \mbox{Gef. C } 63.07 \ \mbox{H } 5.37 \ & \mbox{304.0950 (MS)} \end{array}$ 

Silber(I)-oxid in Chloroform oder Hexacyanoferrat(III) in 0.1 N wäßr. Natriumhydroxid oxidieren 17c zu 9a ( $R_F$ -Wert, IR-Spektrum).

3,4-Dihydro-9,10-dihydroxy-6,7-dimethoxy-3-methyl-1-oxo-1H-naphtho[2,3-c]pyran (17a): Eine Lösung von 130 mg 17b in 5 ml Dioxan schüttelte man bei Raumtemp. unter  $N_2$  mit 3 ml Di-

methylsulfat und 50 ml 2 N NaOH bis zur völligen Hydrolyse des Methylierungsmittels, dabei änderte sich die Farbe der Reaktionslösung von Dunkelgelb nach Rotbraun. Die nach dem Ansäuern (2 N HCl) mit Chloroform extrahierbaren Reaktionsprodukte trennte man an Oxalsäure-Kieselgel (PDC, Chloroform/2% Methanol) in zwei gelbe Hauptzonen, von denen die langsamere 26 mg unumgesetztes 17b enthielt, die schnellere 29 mg (26%) 17a, das aus Methanol in blaßgelben Nadeln kristallisierte. Schmp. 146 °C.  $R_F = 0.48$  (Oxalsäure-Kieselgel, Chloroform/ 1% Methanol; 17c:  $R_F = 0.22$ ). – IR (CO, C=C): 1656 (sh), 1639, 1587 cm<sup>-1</sup>. – <sup>1</sup>H-NMR: s. Tab. 2.  $C_{16}H_{16}O_6$  (304.3) Ber. C 63.15 H 5.30 Molmasse 304.0947 Gef. C 63.21 H 5.29 304.0945 (MS)

Dimerisierung von 17a: 10 mg 17a in 20 ml Chloroform rührte man mit 1 g Silber(I)-oxid, bis kein Ausgangsmaterial mehr chromatographisch nachweisbar war. Die Reaktionsprodukte (nach dem Filtrieren und Eindampfen) wurden an Oxalsäure-Kieselgel (PDC, Chloroform/5% Aceton) in drei gelbe Zonen getrennt (nach abnehmendem  $R_{\rm F}$ -Wert numeriert): 1. 1.8 mg, MS und <sup>1</sup>H-NMR nicht interpretierbar; 2. 2.6 mg, aufgrund von  $R_{\rm F}$ -Wert und MS mit 9a identisch; 3. 0.4 mg, im  $R_{\rm F}$ -Wert mit Xanthomegnin (16b) identisch, MS: m/e = 574 (M<sup>+</sup>, C<sub>30</sub>H<sub>22</sub>O<sub>12</sub> durch Hochauflösung).

4-Hydroxy-1,2-dimethoxynaphthalin (18d): 6 g 1,4-Dihydroxy-2-methoxynaphthalin (18c) schüttelte man unter N<sub>2</sub> mit 20 g Dimethylsulfat und 200 ml 2 N NaOH (40-45 °C). Nach beendeter Umsetzung wurde die braune Emulsion zweimal unter N<sub>2</sub> mit Chloroform extrahiert, um 1,2,4-Trimethoxynaphthalin<sup>41)</sup> (2.1 g Rohprodukt) zu entfernen. Beim Ansäuern der wäßrigen Phase schied sich ein Kristallisat ab, das abgesaugt, getrocknet (3.7 g) und in Benzol digeriert wurde. Das Filtrat lieferte nach Verdampfen des Lösungsmittels 1.0 g (16%) 1-Hydroxy-2,4-dimethoxynaphthalin, das aus Cyclohexan kristallisierte. Schmp. 84 °C (sublimiert i. Hochvak. bei 120 °C; Lit.<sup>42)</sup> 77-82 °C).  $R_{\rm F} = 0.41$  (Kieselgel, Chloroform/1% Methanol). Der Rückstand bestand aus nahezu einheitlichem 18d, das aus Methanol/Chloroform (1:5) beim Einengen in sechseckigen Plättchen kristallisierte. Schmp. 159 °C. Ausb. 2.7 g (42%).  $R_{\rm F} = 0.07$  (Kieselgel, Chloroform/1% Methanol). – IR: 1623, 1591, 1576 cm<sup>-1</sup>. – <sup>1</sup>H-NMR ([D<sub>6</sub>]Aceton):  $\delta = 3.84/3.88$  (2 s; 1-OCH<sub>3</sub> und 2-OCH<sub>3</sub>), 6.83 (s; 3-H), 7.37 (mc, 2 H), 8.08 (mc, 2 H), 8.75 (s, breit; 4-OH). – MS: m/e = 204(27%, M<sup>+</sup>), 189 (30%, M – CH<sub>3</sub>), 161 (18%), 101 (100%), 100 (68%).

C12H12O3 (204.2) Ber. C 70.57 H 5.92 Gef. C 70.42 H 5.92

3,3'-Dimethoxy-2,2'-binaphthyl-1,4,1',4'-dichinon (19): a) Eine Lösung von 500 mg 18d in 30 ml Chloroform rührte man bei Raumtemp. unter Lichtausschluß mit 5 g Silber(I)-oxid, bis kein Ausgangsmaterial mehr nachzuweisen war (DC), filtrierte und brachte das Filtrat i. Vak. zur Trockene. Der Rückstand wurde an Kieselgel (PDC, 5 Platten) mit Chloroform chromatographiert. Die gelbe Hauptzone lieferte 2-Methoxy-1,4-naphthochinon ( $R_F$ , IR-Spektrum). Aus einer gelben Vorzone eluierte man 20 mg (4%) 19, das aus Chloroform/Methanol (5:1) beim Einengen in blaßgelben Nadeln kristallisierte. Schmp. 174°C. – IR: 1678, 1600, 1575 cm<sup>-1</sup>. – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 4.12 (s, 6 H; 3-,3'-OCH<sub>3</sub>), 7.76 (mc, 4 H), 8.14 (mc, 4 H). – MS: m/e = 376 (2.5%, M + 2), 375 (18%, M + 1), 374 (94%, M<sup>+</sup>), 359 (100%, M – CH<sub>3</sub>), 331 (30%, M – CH<sub>3</sub> – CO), 288 (28%).

$$\begin{array}{cccc} C_{22}H_{14}O_6 & (374.4) & \text{Ber. C } 70.59 & \text{H } 3.77 & 2 \ \text{CH}_3O & 16.58 & \text{Molmasse} & 374.0790 \\ & & \text{Gef. C } 70.53 & \text{H } 3.80 & \text{CH}_3O & 16.85 & 374.0792 \ (\text{MS}) \end{array}$$

b) Eine Lösung von 100 mg 3,3'-Dihydroxy-2,2'-binaphthyl-1,4,1',4'-dichinon<sup>23)</sup> in 3 ml Aceton versetzte man bei 0°C mit überschüss. ether. Diazomethanlösung und brachte sogleich i. Vak. zur Trockne. Der Rückstand wurde an Kieselgel (PDC) aus Chloroform chromatographiert. Man erhielt aus der rasch wandernden, gelben Hauptzone 72 mg (67%) **19**, das in allen Eigenschaften mit dem nach a) gewonnenen Präparat übereinstimmte.

3,3',4,4',6,6',9,9'-Octahydro-7,7',10,10'-tetrahydroxy-3,3'-dimethyl-1,1',6,6',9,9'-hexaoxo-8,8'-bi(1Hnaphtho[2,3-c]pyran) (16a, 7,7'-Didesmethyl-xanthomegnin): a) Eine Suspension von 100 mg (0.39 mmol) 9c in 7 ml Wasser versetzte man mit 2.4 ml (0.39 mmol) 1 N NaOH, hielt 5 min im Ultraschallbad, erwärmte die rote Lösung auf 95°C und tropfte innerhalb von 30 min eine Lösung von 106 mg (0.39 mmol) Kaliumpersulfat in 5 ml Wasser dazu. Es bildete sich ein braunes Gel, das bis zum Ende der Reaktionszeit (90 min/95 °C) in einen körnigen Niederschlag überging, der abgesaugt, mit Wasser gewaschen und getrocknet wurde. Das Präparat, das laut DC (Oxalsäure-Kieselgel, Chloroform/10% Aceton) aus nahezu einheitlichem 16a bestand, wurde chromatographisch gereinigt (PDC, Bedingungen s. DC). 16a kristallisiert aus Aceton (mit wenig Eisessig) in orangeroten Nadeln, die sich ab 260°C zersetzen. Ausb. 73 mg (70%). Es ist in essigsaurem Chloroform oder Ethylacetat gut, in Aceton mäßig löslich. Zur Analyse wurde 15 h bei 80°C i. Hochvak. getrocknet. – IR: 1724, 1681, 1610 cm<sup>-1</sup>. – UV (methanol. HCl):  $\lambda_{max}$  ( $\epsilon$ ) = 393 (11200), 292 (16000), 230 nm (48600); (methanol. NaOH):  $\lambda_{max}(\epsilon) = 525$  (sh), 464 (4900), 390 (6500), 279 (36800), 236 nm (sh). - <sup>1</sup>H-NMR ([D<sub>6</sub>]Aceton):  $\delta = 1.49$  (d, J = 6.2 Hz; 3-,3'-CH<sub>3</sub>), 3.20 (AB-Teil eines ABX-Systems, Signalanalyse offen; 4-,4'-H<sub>2</sub>), 4.86 (mc; 3-,3'-H), 6.0 (breit; 7-,7'-OH), 7.60 (s; 5-,5'-H), 13.3 (breit; 10-,10'-OH).

C<sub>28</sub>H<sub>18</sub>O<sub>12</sub> (546.4) Ber. C 61.52 H 3.32 Gef. C 61.36 H 3.44

b) Eine Suspension von 5.0 g wasserfreiem Aluminium(III)-chlorid in 100 ml Chloroform versetzte man mit einer Lösung von 500 mg (0.87 mmol) nativem Xanthomegnin (16b) und kochte 5 min unter Rückfluß. Die violette Farbe der Reaktionsmischung schlug nach Braun um. Es wurde unter Schütteln mit 200 ml eisgekühlter 1 N HCl hydrolysiert, dabei löste sich der Farbstoff-Aluminium(III)-Komplex dunkelrot in der wäßrigen Phase. Das zweiphasige Reaktionsgemisch erwärmte man 10 min auf 50 °C, dabei wurde die wäßrige Phase dunkelgelb und die Farbstoffe ließen sich mit Chloroform und Ethylacetat extrahieren. Die vereinigten Extrakte trocknete man über Natriumsulfat und befreite i. Vak. vom Lösungsmittel. Der rotbraune Rückstand (480 mg) wurde an Oxalsäure-Kieselgel (PDC, 5 Platten, Chloroform/10% Aceton) aufgetrennt. Es bildeten sich drei gelbrote Zonen (nach abnehmendem  $R_F$ -Wert numeriert): 1. 20 mg Ausgangsprodukt 16b, 2. 100 mg (20%) 7-Desmethylxanthomegnin, 3. 300 mg (60%) 16a.

Das 7-Desmethylxanthomegnin aus Zone 2 kristallisierte aus Toluol/Aceton (1:1) beim Eindunsten in feinen gelben Nadeln, die sich ab 190 °C zersetzen. Zur Analyse wurde 8 h bei 70 °C i. Hochvak. getrocknet. – IR: 1724, 1681, 1610 cm<sup>-1</sup>. – UV (methanol. HCl):  $\lambda_{max}$  ( $\varepsilon$ ) = 397 (10700), 290 (15600), 228 nm (50000); (methanol. NaOH):  $\lambda_{max}$  ( $\varepsilon$ ) = 524 (9200), 395 (sh), 274 (29 200), 229 nm (sh). – <sup>1</sup>H-NMR (CDCl<sub>3</sub>):  $\delta$  = 1.51 (d, verbreitert, J = 6.2 Hz; 3-,3'-CH<sub>3</sub>), 3.01 (mc, AB-Teil eines ABX-Systems, nicht aufgelöst; 4-,4'-H<sub>2</sub>), 4.11 (s, 3 H; 7'-OCH<sub>3</sub>), 4.76 (mc; 3-,3'-H), 7.45 (s, mit D<sub>2</sub>O austauschbar; 7-OH), 7.47 (s; 3-H), 7.50 (s; 3'-H), 13.04 (s, mit D<sub>2</sub>O austauschbar; 10-OH), 13.22 (s, verbreitert, mit D<sub>2</sub>O austauschbar; 10'-OH).

Das aus Zone 3 gewonnene 16a war im IR- und <sup>1</sup>H-NMR-Spektrum mit dem nach a) isolierten Präparat identisch.

Xanthomegnin (16b): a) aus 16a: Eine Lösung von 20 mg (0.037 mmol) synthetischem 16a versetzte man bei 0°C mit 0.3 ml 0.4 m ether. Diazomethanlösung (ca. 0.1 mmol) und verdampfte nach 5 min das Lösungsmittel i. Vak. Der Rückstand (20 mg) wurde aus Chloroform/Tetrachlor-kohlenstoff umkristallisiert. Man erhielt 16b in gelbroten Plättchen. Es stimmte im IR-Spektrum (Abb. 2) und <sup>1</sup>H-NMR-Spektrum (Tab. 2) mit nativem 16b überein, sofern dieses zuvor in Toluol erhitzt worden war. – CD-Spektrum (Dioxan):  $\lambda_{max}$  ( $[\Theta]^{25}$ ) = 310 (–17000), 270 nm (+3000).

 $\begin{array}{cccc} C_{30}H_{22}O_{12} \ (574.5) & \mbox{Ber. C } 62.71 & \mbox{H } 3.86 & \mbox{Molmasse } 574.1111 \\ & \mbox{Gef. C } 62.52 & \mbox{H } 3.97 & \mbox{574.1111 } (\mbox{MS}) \end{array}$ 

b) aus 23: 20 mg Viomellein (23) in 5 ml Aceton versetzte man mit einer Lösung von 0.5 g Fremy-Salz in 25 ml 0.1 M Phosphatpuffer (pH 6.5), rührte 2 h bei Raumtemp. und extrahierte die braune Reaktionslösung erschöpfend mit Chloroform. Die Extrakte lieferten einen rotbraunen Verdampfungsrückstand, der an Oxalsäure-Kieselgel (PDC, Chloroform/10% Aceton) getrennt wurde. Es bildeten sich zwei gelbrote Zonen, braune Produkte verblieben am Start. Die schneller wandernde Zone enthielt unumgesetztes 23 ( $R_F$ -Wert, IR-Spektrum), aus der langsameren wurden 3 mg gelbrotes 16b eluiert ( $R_F$ -Wert vgl. Tab. 1, IR-Spektrum, MS: Hochauflösung).

## Literatur

- <sup>1)</sup> 171. Mitteil.: W. A. König, K. P. Pfaff, W. Loeffler, D. Schanz und H. Zähner, Liebigs Ann. Chem. 1978, 1289.
- <sup>2)</sup> J. G. Wirth, P. J. O'Brien, F. L. Schmidt und A. Sohler, J. Invest. Dermatol. 29, 47 (1957); J. G. Wirth, T. E. Beesley und S. R. Amand, Phytochemistry 4, 505 (1965).
- <sup>3)</sup> F. Blank, W. C. Day und G. Just, J. Invest. Dermatol. 40, 133 (1963).
- <sup>4)</sup> F. Blank, A. S. Ng und G. Just, Can. J. Chem. 44, 2873 (1966).
- <sup>5)</sup> Y. Ito, Y. Nozawa und T. Yoneya, J. Chromatogr. **35**, 573 (1968); Y. Nozawa und Y. Ito, Experientia **26**, 803 (1970).
- <sup>6)</sup> R. C. Durley, J. MacMillan, T. J. Simpson, A. T. Glen und W. B. Turner, J. Chem. Soc., Perkin Trans. 1 1975, 163.
- <sup>7) 7a)</sup> G. Just, W. C. Day und F. Blank, Can. J. Chem. 41, 74 (1963); <sup>7b)</sup> A. S. Ng, G. Just und F. Blank, ebenda 47, 1223 (1969).
- <sup>8)</sup> T. J. Simpson, J. Chem. Soc., Perkin Trans. 1 1977, 592.
- <sup>9)</sup> G. Höfle und K. Röser, J. Chem. Soc., Chem. Commun. 1978, 611; und persönl. Mitteil. am 2. Februar 1978.
- <sup>10)</sup> H. J. Teuber und W. Rau, Chem. Ber. 86, 1036 (1953); H. Zimmer, D. C. Lankin und S. W. Horgan, Chem. Rev. 71, 229 (1971); H. Ishii, T. Hanaoka, T. Asaka, Y. Harada und N. Ikeda, Tetrahedron 32, 2693 (1976).
- <sup>11)</sup> R. E. Moore und P. J. Scheuer, J. Org. Chem. 31, 3272 (1966).
- <sup>12)</sup> J. Singh, R. T. Ogata, R. E. Moore, C. W. J. Chang und P. J. Scheuer, Tetrahedron 24, 6053 (1968).
- <sup>13)</sup> A. McKillop, D. H. Perry und M. Edwards, J. Org. Chem. 41, 282 (1976); G. K. Chip und J. S. Grossert, J. Chem. Soc., Perkin Trans. 1 1972, 1629.
- 14) L. V. Pavlova und F. Y. Rachinskii, Russ. Chem. Rev. 37, 587 (1968).
- <sup>15)</sup> H. Arakawa, N. Torimoto und Y. Masui, Liebigs Ann. Chem. 728, 152 (1969).
- <sup>16)</sup> H. Musso in Organic Substances of Natural Origin (ed. by W. I. Taylor und A. R. Battersby), Vol. 1, S. 1, M. Dekker, New York 1967.
- <sup>17)</sup> P. Jacob, P. S. Callery, A. T. Shulgin und N. Castagnoli jr., J. Org. Chem. 41, 3627 (1976).
- <sup>18)</sup> B. Feringa und H. Wynberg, Tetrahedron Lett. 1977, 4447.
- <sup>19)</sup> H. Laatsch, Tetrahedron Lett. 1976, 3287.
- <sup>20)</sup> B. C. Maiti, O. C. Musgrave und D. Skoyles, J. Chem. Soc., Chem. Commun. 1976, 244.
- <sup>21)</sup> A. V. B. Sankaram und G. S. Sidhu, Indian J. Chem. 12, 519 (1974).
- <sup>22)</sup> H. Laatsch, in Vorbereitung.
- <sup>23)</sup> K. Chandrasenan und R. H. Thomson, Tetrahedron 27, 2529 (1971).
- <sup>24)</sup> G. Höfle, Tetrahedron 33, 1963 (1977).
- <sup>25)</sup> H. Wollemann, T. N. Ganjoo und R. Pohloudek-Fabini, Arch. Pharm. Ber. Dtsch. Pharm. Ges. 300, 492, 674 (1967).
- <sup>26)</sup> F. Blank, C. Buxdorf, O. Chin, G. Just und J. L. Tudor, Can J. Chem. 43, 1561 (1969); F. Brisse, G. Just und F. Blank, Acta Cryst. B 34, 557 (1978).
- <sup>27)</sup> S. Shibata, Chem. Br. 1967, 110, und Zitate darin; W. B. Turner, Fungal Metabolites, Academic Press, London 1971.
- 28) E. Morishita, T. Takeda und S. Shibata, Chem. Pharm. Bull. 16, 411 (1968).
- <sup>29)</sup> M. Matsumoto, H. Minato, E. Kondo, T. Mitsugi und K. Katagiri, J. Antibiot. 28, 602 (1975).
- <sup>30)</sup> D. Weisleder und E. B. Lillehoj, Tetrahedron Lett. 1971, 4705; E. B. Lillehoj und A. Ciegler, Can. J. Microbiol. 18, 193 (1972).
- <sup>31)</sup> J. Jiu und S. Mizuba, J. Antibiot. 27, 760 (1974).
- 32) S. Mizuba, C. Hsu und J. Jiu, J. Antibiot. 30, 670 (1977).
- 33) G. M. Blackburn, D. E. U. Ekong, A. H. Neilson und Lord Todd, Chimia 19, 208 (1965).

- <sup>34)</sup> S. F. Mason, R. H. Seal und D. R. Roberts, Tetrahedron 30, 1671 (1974); H. E. Harris, M. M. Harris, R. Z. Mazengo und S. Singh, J. Chem. Soc., Perkin Trans. 2 1974, 1059.
- <sup>35)</sup> S. Shibata und Y. Ogihara, Tetrahedron Lett. 1963, 1777.
   <sup>36)</sup> Y. Ito, K. Kawai und Y. Nozawa, J. Biochem. 74, 805 (1973).

- <sup>37)</sup> H. Holst, Z. Angew. Entomol. 82, 165 (1976); 16b identisch mit GT 13/75, 23 mit GT 12/75.
  <sup>38)</sup> K. B. Raper, C. Thorn und D. I. Fennell, A Manual of the Penicillia, Williams und Wilkins, Baltimore 1949.
- <sup>39)</sup> I. Thein, Dissertation, Univ. Tübingen 1977.
   <sup>40)</sup> L. Santo, Dissertation, Univ. Tübingen 1976.
- <sup>41)</sup> O. Brunner und P. Hanke, Monatsh. Chem. 85, 88 (1954).
- <sup>42)</sup> J. E. Baldwin und H. H. Basson, J. Org. Chem. 34, 2788 (1969).

[208/78]